Predicting User Replying Behavior on a Large Online Dating Site
نویسندگان
چکیده
Online dating sites have become popular platforms for people to look for potential romantic partners. Many online dating sites provide recommendations on compatible partners based on their proprietary matching algorithms. It is important that not only the recommended dates match the user’s preference or criteria, but also the recommended users are interested in the user and likely to reciprocate when contacted. The goal of this paper is to predict whether an initial contact message from a user will be replied to by the receiver. The study is based on a large scale real-world dataset obtained from a major dating site in China with more than sixty million registered users. We formulate our reply prediction as a link prediction problem of social networks and approach it using a machine learning framework. The availability of a large amount of user profile information and the bipartite nature of the dating network present unique opportunities and challenges to the reply prediction problem. We extract user-based features from user profiles and graph-based features from the bipartite dating network, apply them in a variety of classification algorithms, and compare the utility of the features and performance of the classifiers. Our results show that the user-based and graph-based features result in similar performance, and can be used to effectively predict the reciprocal links. Only a small performance gain is achieved when both feature sets are used. Among the five classifiers we considered, random forests method outperforms the other four algorithms (naive Bayes, logistic regression, KNN, and SVM). Our methods and results can provide valuable guidelines to the design and performance of recommendation engine for online dating sites.
منابع مشابه
Who is Dating Whom: Characterizing User Behaviors of a Large Online Dating Site
Online dating sites have become popular platforms for people to look for potential romantic partners. It is important to understand users’ dating preferences in order to make better recommendations on potential dates. The message sending and replying actions of a user are strong indicators for what he/she is looking for in a potential date and reflect the user’s actual dating preferences. We st...
متن کاملCharacterization of User Online Dating Behavior and Preference on a Large Online Dating Site
Online dating sites have become popular platforms for people to look for romantic partners, providing an unprecedented level of access to potential dates that is otherwise not available through traditional means. Characterization of the user online dating behavior helps us to obtain a deep understanding of their dating preference and make better recommendations on potential dates. In this paper...
متن کاملExploring Gender Differences in Member Profiles of an Online Dating Site Across 35 Countries
Online communities such as forums, general purpose social networking and dating sites, have rapidly become one of the important data sources for analysis of human behavior fostering research in different scientific domains such as computer science, psychology, anthropology, and social science. The key component of most of the online communities and Social Networking Sites (SNS) in particular, i...
متن کاملPersonality Prediction with Social Behavior by Analyzing Social Media Data- A Survey
Curiosity to predict personality, behavior and need for this is not as new as invent of social media. Personality prediction to better accuracy could be very useful for society. There are many papers and researches conducted on usefulness of the data for various purposes like in marketing, dating suggestions, organization development, personalized recommendations and health care to name a few. ...
متن کاملEmpirical Analysis and Modeling of Users' Topic Interests in Online Forums
Bulletin Board Systems (BBSs) have demonstrated their usefulness in spreading information. In BBS forums, a few posts that address currently popular social topics attract a lot of attention, and different users are interested in many different discussion topics. We investigate topic cluster features and user interests of an actual BBS forum, analyzing user posting and replying behavior. Accordi...
متن کامل